Correlation between Ti source/drain contact and performance of InGaZnO-based thin film transistors
Kwang-Hyuk Choi and Han-Ki Kim

Citation: Appl. Phys. Lett. 102, 052103 (2013); doi: 10.1063/1.4790357
View online: http://dx.doi.org/10.1063/1.4790357
View Table of Contents: http://apl.aip.org/resource/1/APPLAB/v102/i5
Published by the American Institute of Physics.

Related Articles
Determination of the charge neutrality level of poly(3-hexylthiophene)
Schottky barrier height extraction from forward current-voltage characteristics of non-ideal diodes with high series resistance
Appl. Phys. Lett. 102, 042110 (2013)
Probing into the metal-graphene interface by electron transport measurements
Appl. Phys. Lett. 102, 033107 (2013)
Conductive probe AFM study of Pt-thiol and Au-thiol contacts in metal-molecule-metal systems
Schottky barrier at the AlN/metal junction

Additional information on Appl. Phys. Lett.
Journal Homepage: http://apl.aip.org/
Journal Information: http://apl.aip.org/about/about_the_journal
Top downloads: http://apl.aip.org/features/most_downloaded
Information for Authors: http://apl.aip.org/authors

ADVERTISEMETN

EXPLORE WHAT’S NEW IN APL
SUBMIT YOUR PAPER NOW!
Correlation between Ti source/drain contact and performance of InGaZnO-based thin film transistors

Kwang-Hyuk Choi and Han-Ki Kim
Department of Advanced Materials Engineering for Information and Electronics, Kyung Hee University, I Seocheon-dong, Yongin-si, Gyeonggi-do 446-701, South Korea

(Received 21 September 2012; accepted 14 January 2013; published online 4 February 2013)

Ti contact properties and their electrical contribution to an amorphous InGaZnO (a-IGZO) semiconductor-based thin film transistor (TFT) were investigated in terms of chemical, structural, and electrical considerations. TFT device parameters were quantitatively studied by a transmission line method. By comparing various a-IGZO TFT parameters with those of different Ag and Ti source/drain electrodes, Ti S/D contact with an a-IGZO channel was found to lead to a negative shift in VT (ΔV 0.52 V). This resulted in higher saturation mobility (8.48 cm2/Vs) of a-IGZO TFTS due to effective interfacial reaction between Ti and an a-IGZO semiconducting layer. Based on transmission electron microcopy, x-ray photoelectron depth profile analyses, and numerical calculation of TFT parameters, we suggest a possible Ti contact mechanism on semiconducting a-IGZO channel layers for TFTs. © 2013 American Institute of Physics. [http://dx.doi.org/10.1063/1.4790357]

During the last few decades, amorphous indium-gallium-zinc-oxide (a-IGZO) semiconductor-based thin film transistors (TFTs) have gained attention as candidates to substitute for conventional amorphous Si:H TFTs in active matrix liquid crystal displays and organic light emitting diodes. The a-IGZO TFTs are excellent performers and allow low temperature processes.1–3 Proper selection of source and drain (S/D) contact materials is very important for high performance a-IGZO TFTs because gate bias-induced current values, field effect mobility, and switching properties are critically affected by the contact properties of S/D electrodes.4–7 For this reason, titanium (Ti) and molybdenum (Mo) have been widely employed in academic and industry research groups as S/D electrodes for a-IGZO TFTs.8,9 Considering the work function of a-IGZO (~4.5 eV), Ti (4.3 eV), and Mo (4.7 eV) metals are quite reasonable as S/D electrodes. Ti or Mo contact on a-IGZO leads to a negligible Schottky barrier height between S/D electrodes and the a-IGZO semiconducting layer.10 Kim et al. recently reported the carrier transport mechanism of Ti contact with a-IGZO in terms of specific contact resistivity.11 They reported that Ti contact on conductive IGZO layers with high carrier concentration (1.3 × 1019 cm−3) produced high performance Ohmic contact with a specific contact resistivity as low as 2.85 × 10−5 Ω cm2. Although they suggested a possible Ti ohmic contact mechanism, some issues related to the effects of Ti/a-IGZO on a-IGZO TFT device performance still remain.

In normal n-type a-IGZO TFT devices that operate with on voltage (VON) around VGS ≈ 0 V and on-to-off current ratio (Ion/off) of ~1010, the carrier concentration of a-IGZO semiconducting layers is not as high as >~1019 cm−3 (generally ~1017 cm−3).1 With those semiconducting layers, the a-IGZO TFTs cannot operate in normal switching operations due to high off current values.12 For comparison, current-voltage curves with a normal a-IGZO semiconductor layer used in practical TFT devices are shown in Fig. 1(a). It is imperative to investigate the Ti metal contact properties between Ti metal and a-IGZO semiconducting layers and their influence on TFT device performance as S/D electrodes.

FIG. 1. (a) I-V curves resulting from a 50-nm-thick a-IGZO-based semiconducting layer with Ti contacts as a function of different Ti pad spacing (10, 15, 20, 25, 30, 35, and 40 μm), calculated by circular transmission length method. A 50-nm-thick a-IGZO-based semiconducting layer was prepared through an identical TFT process. (b) Cross sectional illustration of a-IGZO TFT with bottom gate and top contact structure.

Author to whom correspondence should be addressed. Electronic mail: imdlhkhkim@khu.ac.kr.
In this letter, we concatenate Ti metal contact properties with their electrical contribution in low carrier concentration \(a \)-IGZO semiconductor-based TFTs. TFT device parameters, such as field-effect mobility at saturation region \((\mu_{\text{SAT}}) \), subthreshold swing (SS), threshold voltage \((V_T) \), and effective contact resistivity \((r_{\text{Ceff}}) \), were quantitatively studied. By comparing TFT parameters of \(a \)-IGZO TFTs with different Ag and Ti S/D electrodes, we found that IGZO TFT performance was closely related to lower resistance metal contact. This influenced lower \(r_{\text{Ceff}} \) and \(R_{\text{S/D}} \) values in the vicinity of S/D electrodes. Based on transmission electron microscopy (TEM), x-ray photoelectron (XPS) depth profile analysis, and numerical calculations of TFT parameters, a possible Ti contact mechanism for TFTs on semiconducting IGZO channel layers was suggested.

\(a \)-IGZO TFTs with conventional bottom-gate and top S/D contact structures were fabricated. As shown in Fig. 1(b), an \(a \)-IGZO layer was thoroughly coated onto the SiO\(_2\) dielectric layer to avoid gate over-rapping dependent series resistance behavior. Heavily doped Si (\(\sim 10^{-4} \) \(\Omega \) cm) and thermal-grown 100-nm-thick SiO\(_2\) were used as the gate electrode and dielectric layer. A 50-nm-thick \(a \)-IGZO semiconducting layer was deposited by a conventional radio-frequency (RF) magnetron sputtering system using IGZO (\(\text{In}_2\text{O}_3: \text{ZnO:Ga}_2\text{O}_3 = 1:1:1\) mol) target material at a constant RF power density of 2.2 W/cm\(^2\), working pressure of 2 mTorr, and O\(_2/\)Ar gas flow ratio of 0.015. After deposition, \(a \)-IGZO semiconducting layers were thermally annealed at 300°C for 1 h under atmospheric ambient. Then, 50-nm-thick Ti S/D electrodes were deposited by thermal evaporation and patterned by a conventional photolithographic lift-off method. To compare S/D contact effects on the electrical contribution in TFT devices, highly conductive (\(4.72 \times 10^{-6} \) \(\Omega \) cm) 50 nm thick reference Ag S/D electrodes were employed with the same evaporation apparatus. During sputtering and thermal evaporation, the substrate temperature was held at less than 50°C. The resistivity of Ti and Ag metal S/D was measured by Hall measurement equipment with van der Pauw configuration (HL5500PC, Accent Optical Technology). The S/D series resistance \((R_{\text{S/D}}) \), effective contact resistivity \((r_{\text{Ceff}}) \), and effective transfer length \((L_p) \) of \(a \)-IGZO TFTs were confirmed by a well-known transmission line method (TLM) that uses photolithographic lift-off patterning. All device characterizations in this experiment were analyzed by a customized probe station (HP4145B) system in a light tight box. Structural and chemical properties were characterized by high-resolution transmission electron microscopy (HRTEM: JEOL JEM2100F) and X-ray photoelectron spectroscopy (XPS: Thermo Scientific) depth profiles, respectively.

XPS depth profile and HRTEM examinations were performed to correlate the electrical and interfacial reactions between Ti and \(a \)-IGZO. Figure 2(a) shows core O1s and Ti2p level spectra of XPS depth profiles obtained from the Ti/a-IGZO interface and \(a \)-IGZO semiconducting layer regions in TFT devices. Unlike with \(a \)-IGZO semiconducting regions, core O1s level spectra in the vicinity of the Ti/a-IGZO interface exhibited additional binding energies of 531.56 eV corresponding to oxygen vacancy states. This additional binding energy indicates oxygen deficient states of \(a \)-IGZO at the region of interfaces.\(^{13}\) In general, oxygen vacancies in the IGZO matrix act as donors, so the formation of oxygen deficient IGZO regions could increase carrier concentration. The core Ti2p level spectra obtained from the Ti S/D and Ti/a-IGZO interface regions also showed different chemical states. The Ti 2p core level peak obtained from the Ti electrode layer showed a binding energy of 453.98 eV, which indicated a complete Ti metal layer.\(^{14}\) However, the Ti 2p core level peak at the Ti/a-IGZO interface showed multiplicity of intermediate Ti oxidation states (TiO\(_x\)). These phenomena in chemical shifts at the Ti/a-IGZO interfacial region were entirely different from the chemical states at the Ag/a-IGZO region. As shown in Fig. 2(b), any chemical shifts at the vicinity of Ag/a-IGZO interface were observed after evaporation of Ag S/D contacts indicating that there is no oxygen vacancies generation by Ag S/D contact. As expected from the XPS profiles in Fig. 2(a), the cross-sectional HRTEM image clearly demonstrated the existence of a very thin TiO\(_x\) interfacial layer between Ti S/D and \(a \)-IGZO semiconducting layers in Fig. 2(c). Rough interface and bright contrast at the interface implies that an interfacial reaction occurred during a Ti metal evaporation.
process. The formation of interfacial TiOx layers can be further explained by formation enthalpies (ΔHf,form), as previously reported for Ti/AlZnO contact.15 Because the formation enthalpies of Ti2O3 (ΔHf,form = −1520.9 kJ/mol), Ti2O5 (ΔHf,form = −2046.9 kJ/mol), Ti3O5 (ΔHf,form = −2459.4 kJ/mol), and TiO2 (ΔHf,form = −944.0 kJ/mol) are much lower than those of In2O3 (ΔHf,form = −925.8 kJ/mol), Ga2O3 (ΔHf,form = −3565.0 kJ/mol), Ga2O3 (ΔHf,form = −1089.1 kJ/mol), and ZnO (ΔHf,form = −350.5 kJ/mol), the formation of TiOx at the interfacial region between Ti and IGZO layers by oxygen out-diffusion from IGZO is reasonable. Kim et al. proposed a similar Ti/IGZO mechanism based on formation enthalpy. They explained that the lower TiOx enthalpy values could result in significant out-diffusion of In, Ga, and Zn at the Ti/IGZO contact region.11

Figures 3(a) and 3(b) show electrical transfer curves of a-IGZO TFTs with reference Ag and Ti S/D electrodes without a post-annealing process after S/D deposition. To identify the electrical contribution of Ti contact in the devices, Ag and Ti S/D electrodes were prepared on identical α-IGZO semiconducting layers. Field effect mobility at the saturation region (μSAT) and SS values were extracted from transfer curves by the following equations:16

\[I_{DS} = \frac{C_{ox}W}{2L} (V_{GS} - V_T)^2, \quad (V_{DS} = 10.1 \text{ V}) \]

(1)

and

\[SS = \frac{\partial V_{GS}}{\partial (\log I_{DS})}, \]

(2)

where \(I_{DS} \) is drain current, \(C_{ox} \) is capacitance per unit area, \(V_{GS} \) is gate voltage, and \(V_T \) is the threshold voltage that induced a current value of \(W/L \times nA \) at 10.1 \(V_{DS} \). The detailed performance of TFTs for both S/D electrodes is summarized in Table I. The transfer curves of TFTs with Ti S/D electrodes exhibited similar behavior to those of TFTs with Ag S/D electrodes even though Ti S/D has a fairly high electrical resistivity (1.66 \(\times \) \(10^{-4} \) Ω cm) compared to Ag S/D (4.72 \(\times \) \(10^{-6} \) Ω cm). The \(\mu_{SAT} \) values of a-IGZO with Ag and Ti S/D electrodes were found to be 4.54 \(\times \) \(10^{10} \) and 4.66 \(\times \) \(10^{10} \), respectively. However, the a-IGZO TFT with Ti S/D exhibited a slightly negative shifted \(V_T \) (−Δ 0.52 V) value compared to that of the TFT with Ag S/D electrodes (3.98 V). In general, negative \(V_T \) shifts for n-type TFTs are believed to be associated with the relatively large carrier concentration of a-IGZO.10 In this experiment, a-IGZO layer thickness and process conditions were identically confined. Therefore, the negative shift in \(V_T \) can be interpreted as an increased carrier concentration in the a-IGZO semiconducting layer that resulted due to TiOx formation at the interface. In addition, the a-IGZO TFT with Ti S/D showed a higher \(\mu_{SAT} \) value (8.48 cm²/Vs) than the a-IGZO TFT with Ag S/D electrodes (7.12 cm²/Vs). Lee et al. recently reported that thermionic/field emission current is dominant under large \(V_{DS} \) bias conditions (\(V_{DS} > 10.1 \) V in our device).18 With our a-IGZO semiconducting layer, carrier concentration was found to be approximately 6 \(\times \) \(10^{16} \) cm⁻³. Assuming that the carrier concentration of the a-IGZO semiconducting layer is around \(\sim 10^{17} \) cm⁻³, current flow at \(V_{DS} \) around 10.1 V should be governed by thermionic emission rather than thermionic/field emission, as shown in Fig. 3(c). Therefore, this enhanced

![FIG. 3. Transfer characteristics of a-IGZO-based thin film transistors with evaporation-deposited (a) Ag and (d) Ti S/D electrodes. Saturation mobility (\(\mu_{SAT} \)) values were obtained at \(V_{DS} \) of 10.1 V. (c) \(E_{\text{ad}} \) and \(kT \) as functions of doping density of a-IGZO semiconducting layer.](image-url)

TABLE I. Comparative table of device performance for amorphous IGZO TFTs with Ag (4.72 \(\times \) \(10^{-6} \) Ω cm) and Ti (1.66 \(\times \) \(10^{-4} \) Ω cm) source/drain electrodes including saturation mobility (\(\mu_{SAT} \)), SS, off current value (Ioff), on current value (Ion), and on-to-off current ratio (Ion/Ioff), respectively.

<table>
<thead>
<tr>
<th>S/D materials</th>
<th>Ag</th>
<th>Ti</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\rho) (Ω cm)</td>
<td>4.72 (\times) (10^{-6})</td>
<td>1.66 (\times) (10^{-4})</td>
</tr>
<tr>
<td>(\mu_{SAT}) (cm²/Vs)</td>
<td>7.12</td>
<td>8.48</td>
</tr>
<tr>
<td>SS (V/decade)</td>
<td>0.88</td>
<td>0.87</td>
</tr>
<tr>
<td>Ioff (A)</td>
<td>1.50 (\times) (10^{-13})</td>
<td>1.46 (\times) (10^{-13})</td>
</tr>
<tr>
<td>Ion (A)</td>
<td>6.81 (\times) (10^{-3})</td>
<td>6.82 (\times) (10^{-3})</td>
</tr>
<tr>
<td>Ion/Ioff</td>
<td>4.54 (\times) (10^{19})</td>
<td>4.66 (\times) (10^{19})</td>
</tr>
<tr>
<td>(V_T) (V)</td>
<td>3.98</td>
<td>3.46</td>
</tr>
</tbody>
</table>
\(E_{00} = \frac{qh}{4\pi} \sqrt{\frac{N}{K_s m_{\text{tun}}^*}} = 1.86 \times 10^{-11} \sqrt{\frac{N}{K_s m_{\text{tun}}^*/m}} \text{[eV]},\)

where \(q\) is electron charge, \(h\) is Planck's constant \((6.626 \times 10^{-34} \text{ J s})\), \(N\) is doping density, \(K_s\) is the dielectric constant of \(a\)-IGZO semiconductors \((10.2)\), \(m_{\text{tun}}^*\) is the tunneling effective mass and \(m\) is electron mass. The formation of TiO\(_x\) interfacial layers retains oxygen vacancies at the surface of the \(a\)-IGZO channel layer. Because of this, the carrier concentration of \(a\)-IGZO channel layers could increase after interfacial reactions. We believe that the \(E_{00}\) value increased for this interfacial layer and the current flow mechanism changed from thermionic to thermionic/field emission.

To quantitatively investigate the effects of Ti S/D contact on TFT device parameters, source and drain series resistance \((R_{SD})\), effective contact resistivity \((r_{Ceff})\), and effective transfer length \((L_T)\) were calculated by the TLM.\(^{16}\) Different TFT channel lengths were set at 5, 10, 15, 20, 25, 30, 35, and 40 \(\mu\text{m}\). A global gate electrode was used to minimize the gate dependent \(R_{SD}\) behavior because small gate overlap to source (or drain) electrode can cause large \(R_{SD}\). Figures 4(a) and 4(b) show total TFT ON resistance \((R_T)\) for both \(a\)-IGZO TFTs with respect to TFT channel length for different \(V_{GS}\). Figures 4(c) and 4(d) exhibit \(V_{GS}\) dependent electrical parameters of \(a\)-IGZO TFTs with reference \(Ag\) and Ti S/D electrodes. \(R_T\) is expressed by following equation:\(^{16}\)
VDS
RS
LT
rCeff
2RSD
is
total
series
resistance
and
rch
is
channel
resistance
per
channel
length,
which
is
defined
by
slope
in
RT
versus
source-to-drain
distance.
The
LT,
rCeff,
and
contact
resistivity
(RC)
values
for
a-IGZO
with
both
Ag
and
Ti
S/D
electrodes
were
calculated
by
the
following
approximations:
\[
R_T = \frac{V_{DS}}{I_{DS}} = r_{ch}L + 2R_{S/D},
\]
(4)

where
2RSD
is
total
(series
+ drain)
resistance
and
rch
is
channel
resistance
per
channel
length,
which
is
defined
by
slope
in
RT
versus
source-to-drain
distance.
The
LT,
rCeff,
and
contact
resistivity
(RC)
values
for
a-IGZO
with
both
Ag
and
Ti
S/D
electrodes
were
calculated
by
the
following
approximations:
\[
L_T = \frac{R_{S/D}}{r_{C_{eff}}},
\]
(5)

\[
r_{C_{eff}} = \frac{W}{r_{ch}}L_T^2 + \frac{W}{r_{ch}}R_{S/D}^2,
\]
(6)

\[
R_C = R_{S/D}L_TW.
\]
(7)

Both
rCeff
and
RSD
values
for
a-IGZO
TFTs
with
reference
Ag
and
Ti
S/D
electrodes
dramatically
decreased
with
increased
VGS
within
a
measured
range.
However,
the
a-IGZO
TFT
with
Ti
S/D
electrodes
exhibited
lower
RC,
rCeff,
and
RSD
values
(1.65 \times 10^{-2} \Omega \text{ cm}^2, 8.71 \times 10^{-3} \Omega \text{ cm}^2,
and
507 \Omega)
than
the
a-IGZO
TFT
with
reference
Ag
S/D
electrodes
(4.57 \times 10^{-2} \Omega \text{ cm}^2, 2.29 \times 10^{-2} \Omega \text{ cm}^2,
and
858 \Omega)
at
VGS
= 24 \text{ V},
in
spite
of
the
high
resistivity
of
Ti
metal.
Furthermore,
the
a-IGZO
TFT
with
Ti
S/D
electrodes
had
smaller
LT
values
than
the
TFT
with
Ag
S/D
electrodes,
regardless
of
VGS.
It
is
well
known
that
LT
increases
with
the
thickness
of
the
semiconducting
layer,
bulk
density-of-states,
and
S/D
contact
resistance.

This
work
was
mainly
supported
by
the
Samsung
Mobile
Displays
Research
Center
Program
and
was
partially
supported
by
the
Industrial
Core
Technology
Development
Programs
of
the
Korea Ministry
of
Knowledge
Economy
(Grant
No.
10033573).

1K. Nomura, H. Ohta, K. Ueda, T. Kamiya, M. Hirano, and H. Hideo,
2A. Takagi, T. Kamiya, M. Hirano, and H. Hosono, Nature (London) 432,
3H. Yabuta, M. Sano, K. Abe, T. Aiba, T. Den, H. Kumomi, K. Nomura,
100, 263505 (2012).
6W.-S. Kim, Y.-K. Moon, S. Lee, B.-W. Kang, T.-S. Kwon, K.-T. Kim,
10P. Barquinha, A. M. Vilà, G. Gonçalves, L. Pereira, R. Martins, J. Morante,
Lett. 93, 033513 (2008).
14Handbook of X-Ray Photoelectron Spectroscopy, edited by J. F. Moulder,
W. F. Stickle, P. E. Sobol, K. D. Bomben and J. Chastain (Perkin-Elmer,
77, 1647 (2000).
16C. R. Kagan and P. Andry, Thin-Film Transistors (Marcel Dekker, Inc.,
2003).
17J. Park, C. Kim, S. Kim, I. Song, S. Kim, D. Kang, H. Lim, H. Yin,
19D. K. Schroder, Semiconductor Materials and Device Characterization,
20S. Martin, C.-S. Chiang, J.-Y. Nahm, T. Li, J. Kanicki, and Y. Ugai,